101 research outputs found

    Disparities in care and outcomes for primary liver cancer in England during 2008–2018: a cohort study of 8.52 million primary care population using the QResearch database

    Get PDF
    Background: Liver cancer has one of the fastest rising incidence and mortality rates among all cancers in the UK, but it receives little attention. This study aims to understand the disparities in epidemiology and clinical pathways of primary liver cancer and identify the gaps for early detection and diagnosis of liver cancer in England. Methods: This study used a dynamic English primary care cohort of 8.52 million individuals aged ≥25 years in the QResearch database during 2008–2018, followed up to June 2021. The crude and age-standardised incidence rates, and the observed survival duration were calculated by sex and three liver cancer subtypes, including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CCA), and other specified/unspecified primary liver cancer. Regression models were used to investigate factors associated with an incident diagnosis of liver cancer, emergency presentation, late stage at diagnosis, receiving treatments, and survival duration after diagnosis by subtype. Findings: 7331 patients were diagnosed with primary liver cancer during follow-up. The age-standardised incidence rates increased over the study period, particularly for HCC in men (increased by 60%). Age, sex, socioeconomic deprivation, ethnicity, and geographical regions were all significantly associated with liver cancer incidence in the English primary care population. People aged ≥80 years were more likely to be diagnosed through emergency presentation and in late stages, less likely to receive treatments and had poorer survival than those aged <60 years. Men had a higher risk of being diagnosed with liver cancer than women, with a hazard ratio (HR) of 3.9 (95% confidence interval 3.6–4.2) for HCC, 1.2 (1.1–1.3) for CCA, and 1.7 (1.5–2.0) for other specified/unspecified liver cancer. Compared with white British, Asians and Black Africans were more likely to be diagnosed with HCC. Patients with higher socioeconomic deprivation were more likely to be diagnosed through the emergency route. Survival rates were poor overall. Patients diagnosed with HCC had better survival rates (14.5% at 10-year survival, 13.1%–16.0%) compared to CCA (4.4%, 3.4%–5.6%) and other specified/unspecified liver cancer (12.5%, 10.1%–15.2%). For 62.7% of patients with missing/unknown stage in liver cancer, their survival outcomes were between those diagnosed in Stages III and IV. Interpretation: This study provides an overview of the current epidemiology and the disparities in clinical pathways of primary liver cancer in England between 2008 and 2018. A complex public health approach is needed to tackle the rapid increase in incidence and the poor survival of liver cancer. Further studies are urgently needed to address the gaps in early detection and diagnosis of liver cancer in England. Funding: The Early Detection of Hepatocellular Liver Cancer (DeLIVER) project is funded by Cancer Research UK (Early Detection Programme Award, grant reference: C30358/A29725)

    The p53HMM algorithm: using profile hidden markov models to detect p53-responsive genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A computational method (called p53HMM) is presented that utilizes Profile Hidden Markov Models (PHMMs) to estimate the relative binding affinities of putative p53 response elements (REs), both p53 single-sites and cluster-sites. These models incorporate a novel "Corresponded Baum-Welch" training algorithm that provides increased predictive power by exploiting the redundancy of information found in the repeated, palindromic p53-binding motif. The predictive accuracy of these new models are compared against other predictive models, including position specific score matrices (PSSMs, or weight matrices). We also present a new dynamic acceptance threshold, dependent upon a putative binding site's distance from the Transcription Start Site (TSS) and its estimated binding affinity. This new criteria for classifying putative p53-binding sites increases predictive accuracy by reducing the false positive rate.</p> <p>Results</p> <p>Training a Profile Hidden Markov Model with corresponding positions matching a combined-palindromic p53-binding motif creates the best p53-RE predictive model. The p53HMM algorithm is available on-line: <url>http://tools.csb.ias.edu</url></p> <p>Conclusion</p> <p>Using Profile Hidden Markov Models with training methods that exploit the redundant information of the homotetramer p53 binding site provides better predictive models than weight matrices (PSSMs). These methods may also boost performance when applied to other transcription factor binding sites.</p

    Copy-Number Variation: The Balance between Gene Dosage and Expression in Drosophila melanogaster

    Get PDF
    Copy-number variants (CNVs) reshape gene structure, modulate gene expression, and contribute to significant phenotypic variation. Previous studies have revealed CNV patterns in natural populations of Drosophila melanogaster and suggested that selection and mutational bias shape genomic patterns of CNV. Although previous CNV studies focused on heterogeneous strains, here, we established a number of second-chromosome substitution lines to uncover CNV characteristics when homozygous. The percentage of genes harboring CNVs is higher than found in previous studies. More CNVs are detected in homozygous than heterozygous substitution strains, suggesting the comparative genomic hybridization arrays underestimate CNV owing to heterozygous masking. We incorporated previous gene expression data collected from some of the same substitution lines to investigate relationships between CNV gene dosage and expression. Most genes present in CNVs show no evidence of increased or diminished transcription, and the fraction of such dosage-insensitive CNVs is greater in heterozygotes. More than 70% of the dosage-sensitive CNVs are recessive with undetectable effects on transcription in heterozygotes. A deficiency of singletons in recessive dosage-sensitive CNVs supports the hypothesis that most CNVs are subject to negative selection. On the other hand, relaxed purifying selection might account for the higher number of protein–protein interactions in dosage-insensitive CNVs than in dosage-sensitive CNVs. Dosage-sensitive CNVs that are upregulated and downregulated coincide with copy-number increases and decreases. Our results help clarify the relation between CNV dosage and gene expression in the D. melanogaster genome

    A comparison of genomic copy number calls by Partek Genomics Suite, Genotyping Console and Birdsuite algorithms to quantitative PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variants are >1 kb genomic amplifications or deletions that can be identified using array platforms. However, arrays produce substantial background noise that contributes to high false discovery rates of variants. We hypothesized that quantitative PCR could finitely determine copy number and assess the validity of calling algorithms.</p> <p>Results</p> <p>Using data from 29 Affymetrix SNP 6.0 arrays, we determined copy numbers using three programs: Partek Genomics Suite, Affymetrix Genotyping Console 2.0 and Birdsuite. We compared array calls at 25 chromosomal regions to those determined by qPCR and found nearly identical calls in regions of copy number 2. Conversely, agreement differed in regions called variant by at least one method. The highest overall agreement in calls, 91%, was between Birdsuite and quantitative PCR. Partek Genomics Suite calls agreed with quantitative PCR 76% of the time while the agreement of Affymetrix Genotyping Console 2.0 with quantitative PCR was 79%.</p> <p>Conclusions</p> <p>In 38 independent samples, 96% of Birdsuite calls agreed with quantitative PCR. Analysis of three copy number calling programs and quantitative PCR showed Birdsuite to have the greatest agreement with quantitative PCR.</p

    The Characterisation of Three Types of Genes that Overlie Copy Number Variable Regions

    Get PDF
    Background: Due to the increased accuracy of Copy Number Variable region (CNV) break point mapping, it is now possible to say with a reasonable degree of confidence whether a gene (i) falls entirely within a CNV; (ii) overlaps the CNV or (iii) actually contains the CNV. We classify these as type I, II and III CNV genes respectively. Principal Findings: Here we show that although type I genes vary in copy number along with the CNV, most of these type I genes have the same expression levels as wild type copy numbers of the gene. These genes must, therefore, be under homeostatic dosage compensation control. Looking into possible mechanisms for the regulation of gene expression we found that type I genes have a significant paucity of genes regulated by miRNAs and are not significantly enriched for monoallelically expressed genes. Type III genes, on the other hand, have a significant excess of genes regulated by miRNAs and are enriched for genes that are monoallelically expressed. Significance: Many diseases and genomic disorders are associated with CNVs so a better understanding of the different ways genes are associated with normal CNVs will help focus on candidate genes in genome wide association studies

    Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    Get PDF
    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications

    Modeling double strand break susceptibility to interrogate structural variation in cancer

    Get PDF
    Abstract Background Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs). Results We used experimentally quantified DSB frequencies in cell lines with matched chromatin and sequence features to derive the first quantitative genome-wide models of DSB susceptibility. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type-specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumors, many SV-enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation and are therefore credible targets of positive selection in tumors. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel coldspot regions appear to be subject to purifying selection in tumors and are enriched for active promoters and enhancers. Conclusions We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumors

    Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

    Get PDF
    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes

    Genome-Wide Analysis of Copy Number Variation in Type 1 Diabetes

    Get PDF
    Type 1 diabetes (T1D) tends to cluster in families, suggesting there may be a genetic component predisposing to disease. However, a recent large-scale genome-wide association study concluded that identified genetic factors, single nucleotide polymorphisms, do not account for overall familiality. Another class of genetic variation is the amplification or deletion of >1 kilobase segments of the genome, also termed copy number variations (CNVs). We performed genome-wide CNV analysis on a cohort of 20 unrelated adults with T1D and a control (Ctrl) cohort of 20 subjects using the Affymetrix SNP Array 6.0 in combination with the Birdsuite copy number calling software. We identified 39 CNVs as enriched or depleted in T1D versus Ctrl. Additionally, we performed CNV analysis in a group of 10 monozygotic twin pairs discordant for T1D. Eleven of these 39 CNVs were also respectively enriched or depleted in the Twin cohort, suggesting that these variants may be involved in the development of islet autoimmunity, as the presently unaffected twin is at high risk for developing islet autoimmunity and T1D in his or her lifetime. These CNVs include a deletion on chromosome 6p21, near an HLA-DQ allele. CNVs were found that were both enriched or depleted in patients with or at high risk for developing T1D. These regions may represent genetic variants contributing to development of islet autoimmunity in T1D
    corecore